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Abstract

We present a non-blocking implementation for the concurrent Heap data structure in the asyn-

chronous shared memory system. The system may be a traditional one with a single processor with

multiple threads, or it may be the one with multiple processors each possibly with multiple threads.

Our implementation supports readMin, deleteMin, and insert operations on the heap. The deleteMin

and insert operations are non-blocking operations, whereas the readMin is wait-free. One easy ap-

proach of using a heap in multi-threading environment could be by locking the entire heap before

performing any operation. This would make the implementation very slow to have any practical

application.

The above inefficiency could be reduced by using the fine-grained locking mechanism as shown

by Herlihy and Shavit[16]. But, this would still be a blocking implementation, where some threads

may be waiting forever for some other threads holding the locks that might have crashed or failed.

Israeli and Rappoport[20] gave a non-blocking implementation which supports deleteMin and

insert operations using some primitives which they claim could be built using transactional memory.

Moreover, their implementation has a limitation on the range of values a node in the heap can have.

We propose a different implementation which supports all three operations using a primitive, called

Double-Compare-And-Set(DCAS). DCAS is a synchronization operation supported in hardware by

Motorola 68K family of processors [19]. It was also going to be supported by Sun’s canceled Rock

processor[4]. DCAS takes two memory locations as input, and writes new values to them only if

they match input expected values. Our algorithm has no limitation on the range of numbers a node

can have.

iii



www.manaraa.com

Acknowledgements

I would like to express my deepest sincere gratitude to my adviser Dr. Ajoy K. Datta for giving

me a unique opportunity to work on such an important topic. His continuous guidance, invaluable

suggestions, affectionate encouragement and generous help are greatly acknowledged. His keen

interest on the topic and enthusiastic support on my effort was a source of inspiration to carry out

the study. I also consider myself fortunate to work as his TA for past two years.

I would also like to thank Dr. Ju-Yeon Jo, Dr. Lawrence L. Larmore and Dr. Venkatesan

Muthukumar for their time in reviewing my report and their willingness to serve on my committee.

I also thank my friends and family for their unconditional support.

Mahesh Acharya

University of Nevada, Las Vegas

August 2012

iv



www.manaraa.com

Contents

Abstract iv

Acknowledgements v

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 Shared Memory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Multi Threaded System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Multi Core System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Beyond Multi-Core System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Synchronization of Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Lock Based System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Lock Free Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Literature 10

3.1 Universal Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



www.manaraa.com

4 Model 20

4.1 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Primitive Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Compare and Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Double Compare and Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Subsidiary Operations 24

5.1 getParent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 getChild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 getOwner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 setOwner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5 getOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.6 setOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.7 getNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.8 setNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.9 getStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.10 swapValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.11 helpDown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.12 helpUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.13 helpNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Operations 42

6.1 readMin operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 insert operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 deleteMin Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Conclusion and Future Work 51

Bibliography 53

Vita 55



www.manaraa.com

List of Tables

2.1 Comparision between single core and dual core chips. . . . . . . . . . . . . . . . . . . 6

vii



www.manaraa.com

List of Figures

2.1 A shared memory system with 3 processors P1, P2 and P3 . . . . . . . . . . . . . . 4

3.1 P points to object O, threads A and B copy both the object and the pointer. They

make changes to their own copy of O . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Thread A and B try to update P so that it points to their copy. B is successful but

A fails. A then copies the pointer and the new object and makes modification to this

copy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Thread A is now successful in making the pointer point to its copy. . . . . . . . . . . 11

3.4 Insertion of node C and deletion of node B occurring concurrently in a linked list . . 12

3.5 Deletion of node B and node C occurring concurrently in a linked list . . . . . . . . 12

3.6 BST before and after concurrent insertion and deletion of F and E respectively . . . 13

3.7 BST before and after concurrent deletion of C and E . . . . . . . . . . . . . . . . . . 13

3.8 Insert operation inserts the node at the end of the heap . . . . . . . . . . . . . . . . 14

3.9 Bubble up of the newly inserted node in the heap . . . . . . . . . . . . . . . . . . . . 14

3.10 Bubble up of the inserted node in the heap . . . . . . . . . . . . . . . . . . . . . . . 15

3.11 Final heap after insert operation completes. . . . . . . . . . . . . . . . . . . . . . . . 15

3.12 Delete operation returns the element from the root and copies the last element to the

root. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.13 Now the element at the root starts bubble down . . . . . . . . . . . . . . . . . . . . 16

3.14 Bubble down of the larger element continues. . . . . . . . . . . . . . . . . . . . . . . 17

3.15 Bubble down still needs to be carried on. . . . . . . . . . . . . . . . . . . . . . . . . 17

3.16 Final heap after delete operation completes. . . . . . . . . . . . . . . . . . . . . . . . 18

3.17 readMin operation returns the element at root. . . . . . . . . . . . . . . . . . . . . . 18

3.18 Thread T2 is waiting for the lock held by thread T1. . . . . . . . . . . . . . . . . . . 19

4.1 Information stored per node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

viii



www.manaraa.com

4.2 Information stored per Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Nodes just before updating the intention to swap . . . . . . . . . . . . . . . . . . . 27

5.2 Nodes just after updating the intention to swap . . . . . . . . . . . . . . . . . . . . 28

5.3 Now the values are swapped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Owner information is updated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5 Finally the node info is updated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6 It is the leaf node. So, it can remove the ownership and change the owner information. 30

5.7 It finds out that it has the smallest value in its entire sub-tree. So, it can remove the

ownership and change the owner information. . . . . . . . . . . . . . . . . . . . . . 30

5.8 Once it encounters the a node that is not owned by any thread, it can stop looking for

minimum value in the sub-tree. Here again, it can remove the ownership and change

the owner information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.9 It finds out that minimum lies in the left sub-tree. So it has to help the left child. . 32

5.10 a case with helpUp operation on a root. . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.11 a case with helpUp operation where a swapping is required. . . . . . . . . . . . . . . 33

5.12 a case with helpUp operation where parents needs to be helped first. . . . . . . . . . 34

6.1 a case of readMin operation on the tree . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 another case of readMin operation on the tree . . . . . . . . . . . . . . . . . . . . . . 43

6.3 A heap with size 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Intermediate stage of the heap during deleteMin operation. . . . . . . . . . . . . . . 45

6.5 insert operation before the deleteMin operation completes. . . . . . . . . . . . . . . . 45

6.6 snapshot of a heap before deleteMin operation. . . . . . . . . . . . . . . . . . . . . . 47

6.7 snapshot of a heap after decreasing the heap size. . . . . . . . . . . . . . . . . . . . . 47

6.8 snapshot of a heap after getting the ownership of the last node. . . . . . . . . . . . . 47

6.9 snapshot of a heap after the root is given the value from the last node. . . . . . . . . 48

6.10 snapshot of a heap after the last node is declared empty. . . . . . . . . . . . . . . . . 48



www.manaraa.com

Chapter 1

Introduction

With the use of multi-core processors being ubiquitous, concurrent data structures have been getting

the interest of many researchers. These data structures allow many threads to access the same data

at the same time. This calls for the proper management of the contention between the threads so

that the operations are correct and the data structure stays valid. Traditionally, these concurrency

related issues used to be handled by using locks but use of locks has many issues as explained in

section 2.2.1. To resolve these issues various approaches have been made for different data structures

like linked lists, queues, hash tables etc.

Heap is one of such fundamental data structure which is also a priority queue. The highest

priority element always stays at the root of the heap. If we assign higher priority to smaller element

then the heap formed is called min-heap but if we assign higher priority to larger element then the

heap formed is called max-heap. Through out this thesis when we say heap we are referring to the

former one called min-heap unless otherwise stated. Changing our min-heap implementation to max-

heap implementation shouldn’t be any difficult. And a stable heap has the invariant that the parent

has no lower priority than any of its children. The heap supports three operations insert,delete and

read maximum priority element. Insert and delete operations insert and delete an item respectively

in the heap where as read returns the element with maximum priority.

Each of these operations are in fact a sequence of many instructions. This may make the heap

inconsistent during insertion or deletion. During insertion, a node that is bubbling up may have its

priority lower than that of its parent where as a node bubbling down due to deletion may have higher

priority than its children. Such situations may arise due to simultaneous non-blocking operations in

the heap.

Any node that violates the order invariant can create confusions to subsequent insertions and

deletions and terminate them prematurely leaving the heap in inconsistent state. So any imple-

1
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mentation of concurrent operations on heap should consider these situations properly to make them

work correctly.

1.1 Contribution

In this thesis, we present an implementation of operations for concurrent heap structure on asyn-

chronous shared memory system. Our implementation offers all readMin, deleteMin and insert

operations on the heap structure. The readMin operation is wait free and returns the minimum el-

ement from the heap, deleteMin operation deletes the minimum element from the heap and returns

it where as insert operation inserts an item into the heap at proper location. Both deleteMin and

insert operations are non-blocking operations.

To make these operations non-blocking we used the approach of helping other threads if they try

to block a thread. To increase the performance, we help other thread only if that thread is preventing

us from progress. A thread which might have gone sleeping might have been helped accomplish the

task or might have been progressed further. Our implementation also makes the woken up thread

to proceed from the correct new position rather than having to go through complex operations of

figuring out the current state which is the case in the implementation by Israeli and Rappoport[20].

We have presented the implementation in a detailed pseudo-code in order to enable anyone with

hardware support for DCAS to write a code in a programming language.

1.2 Outline

In Chapter 2 we give an overview of shared memory system. Our focus will be mainly on multi-

threaded system and multi-core systems. We will briefly explain why more and more systems are

going towards multi-core systems. We will also include different approaches for synchronization

among threads. Lock Based synchronization approach and its limitations are also explained in the

chapter along with other lock free systems. Lock free systems are explained in terms of obstruction

free, wait free and non-blocking implementations.

While we know of many different data structures for sequential operations, we need to use them

with caution for concurrent operations. In Chapter 3 we will briefly illuminate various approaches

people have come forward with for implementing data structures for asynchronous shared mem-

ory systems. In this chapter we will also highlight a very popular transformation called universal

transformation which can be used to transform a sequential algorithm to a non-blocking concurrent

algorithm. We will also include works done by various researchers in some of the popular data

structures like linked lists, binary search trees and heap.

2
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In Chapter 4 we will discuss how we represent our data. Heap is constructed from arrays. One

array holds the data while another array holds the information about the nodes of the heap. Each

thread also have some variables to store information. Different bits of the information word are allo-

cated to represent different things like the node id, current operation and the thread id. This chapter

also has the listing of different global values we use for our algorithm. It also contains the details

about CAS and DCAS the primitive hardware operations which are used in our implementation.

Chapter 5 consists of implementations of various procedures which we call subsidiary operations.

These procedures are created to implement the main procedures in chapter 6. Chapter 6 explains

the details of readMin, deleteMin and insert operations in the heap. Finally we conclude the thesis

with chapter 7 which contains both the conclusions and recommendations for future work.

3
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Chapter 2

Background

Unlike in old days, computers now generally consists of multiple processors. On the basis of number

of processors we can classify the computer system into uni-processor or multi-processor system.

Again, computers can be constructed out of several separate computation nodes, where each node

(which could be a computer system in its own) is physically separated from others. These type of

computer systems are called distributed systems[1].

These computer systems need a mechanism to communicate between one another. It could be

done either by shared memory system or message passing system. Message passing system is the

one where communication is done by exchange of information packages via some form of network.

Details of message passing system are beyond the scope of this thesis while shared memory system

is explained in the section 2.1.

2.1 Shared Memory System

Shared memory system is one in which processes(or threads) or the processors communicate via a

shared memory. Figure 2.1 shows a shared memory system where three processors P1, P2 and P3

access the same memory. Again, it it important to note that the shared memory could be centrally

2P

P1
P3

Shared Memory

Figure 2.1: A shared memory system with 3 processors P1, P2 and P3

4
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located or distributed into different computation nodes and connected via some form of network.

On the basis of how the shared memory is distributed, we have two different kind of architectures:

UMA(uniform memory access) and NUMA(non-uniform memory access). In UMA, the shared

memory appears to be at equal distance from each processor and hence have the same response

time. However in NUMA architecture, a shared memory might appear to be closer to one processor

while another shared memory might appear closer to another processor and hence they may not

have the same response time.

In order to exploit concurrency concurrency in a computational workload, multi-threaded system

or multi-core system or both can come into help.

2.1.1 Multi Threaded System

When a program needs memory access to proceed further, that access must reference RAM whose

cycle time is tens of times slower than that of a processor, then a single threaded processor can do

nothing but wait until the required data is received. Thus, a lot of times single threaded processors

spend a huge amount of time doing nothing.

If it is such latencies that is preventing a CPU pipeline busy, then a single pipeline should be

able to complete more than one concurrent task in less time then it would take to run the tasks

serially. This leads us to run more than one thread at a time. Such execution requires more than one

program counter and more than one set of programmable registers. But replicating these resources is

still less than replicating an entire processor. Kevin[22] a Principal Architect at MIPS Technologies,

mentions that in the MIPS32 34K processor, which implements the multi-threading architecture, an

increase in area of 14% can buy an increase of throughput of 60% relative to a comparable single-

threaded core. However, multi-threading a single processor can only improve performance up to the

level where the execution units are saturated.

Intel terms this technology of supporting multi-threading by duplicating sections of processor

hyper-threading [7]. Intel states[25] that hyper-threading makes a single physical processor appear as

two logical processors where the physical execution resources are shared and the architecture state

is duplicated for the two logical processors. This enables the operating system or the user program

to schedule threads as they would in multiple physical processors.

Multi-threading isn’t limited to hyper-threading. Even without addition of processor components

multi-threading is still relevant. An operating system can implement time-division multiplexing to

make the processor switch between threads.

5
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2.1.2 Multi Core System

A multi-core processor[9] is a single computing component with two or more independent actual

processors called cores. Multiple cores can run multiple instructions at the same time increasing

overall speed for programs that support parallel computing. To further elaborate why multi-core

processing is so important we need to see why it was really invented.

The Need of Multi-core Processors

In 1965 Gorden Moore first drew a line representing the number of components per integrated

circuits for minimum cost per component developed between 1959 and 1964. He extrapolated the

trend to 1975 to show that the number of components per chip would double per year[27]. In 1975, it

came to the realization that the doubling would happen every two year rather than every year. The

rule finally settled with the prediction that the doubling would happen every 18 months although

Moore still doesn’t agree with the change[8, 2]. As the transistor size decreased the clock speed

increased[23]. Higher frequency meant faster computers.

With transistor density increasing, the heat was now becoming a major problem. It was getting

very difficult to increase the clock speed without having to deal with the heat. But we are limited

by the following equations[24].

Power = Capacitance× V oltage2 × Frequency

Frequency ∝ V oltage

so we have,

Power ∝ V oltage3

So 10% reduction in voltage would bring 10% reduction in frequency, 30% reduction in power

and less than 10% reduction in performance. Goeff Lowney[24],Intel Fellow gives us the following

observation between single core to dual core.

Parameters single core dual core
Area 1 2
Voltage 1 0.85
Frequency 1 0.85
Power 1 1
Performance 1 1.8

Table 2.1: Comparision between single core and dual core chips.

6
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The observation alone is sufficient argument to see why there is so much buzz about multi-cores

for improving performance. So the industry is halting the clock rate improvements and is instead

doubling the number of cores every 18 months[29]. The multi-core systems, distribute the work load

to several processors. So there can be as many processes running simultaneously as the number of

processors. But the gain in performance depends largely on how the algorithms are implemented.

It is driven by the fact that the larger the fraction of the code that can be parallelized larger is the

gain and it is what Amdahl’s law [6, 17] confirms to.

2.1.3 Beyond Multi-Core System

Kevin[22] points out that no matter how many cores have been used its always easy to imagine adding

another while only a limited class of problems can make practical use of them. Hyperthreading and

quad-core processors now already leading the market, research on many-core[29] computing is well

underway.

2.2 Synchronization of Processes

With multi-core architectures more and more processes and threads were being executed concur-

rently. It increased the overall speed of execution. However, there was a problem. The concurrent

execution started sharing resources. And such sharing some times created race condition[30] and

started behaving in unexpected manner. The asynchronous concurrent processes had to be synchro-

nized when they were accessing the shared resource.

2.2.1 Lock Based System

Mutual exclusion has traditionally been a very safe approach for achieving synchronization among

processes that share certain resources. Use of lock is one well known approach of achieving the mutual

exclusion. However this simple solution is not quite a good solution when it comes to multi-core

architecture. Some of the prominent drawbacks of using lock based systems are as follows:

• Deadlock: Say we have two processes A and B running concurrently. Both of them use resources

r1 and r2. A locks r1 while B locks r2. A now waits for B to release its lock on r2 while B

waits for A to release lock on r1 before each releasing the lock they hold themselves. They will

end up waiting for ever. Deadlock has occurred.

• Priority Inversion: Say we have three processors A, B and C with priorities low, medium and

high respectively. A and C share a resource and synchronize by mutual exclusion. If A holds
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the shared resource while B preempts it C is made to wait for B although B has actually lower

priority then C. This may not be what the scheduler actually wanted. It was the “Priority

Inversion” which was frequently resetting “The Pathfinder” in Mars in 1997[21].

• Delays: A process which is enjoying the shared resource may take a long time to complete. It

will cause other processes waiting for the resource to delay. The waiting processes may end up

waiting for ever if the one holding the resource dies.

Using mutual exclusion makes the algorithm sequential in nature. It can’t be worst than having

multiple cores at hand and having to perform tasks sequentially.

2.2.2 Lock Free Systems

Lock free implementations don’t rely on mutual exclusion so they are free from the above mentioned

limitations of mutual exclusion. Some properties associated with progress conditions[28] in failure

prone asynchronous systems are explained.

Obstruction Free Implementations

In an obstruction free implementation a process completes its operation if allowed to execute alone

for sufficiently long time. This property is useful in those systems where conflict is rare.

Wait Free Implementations

In wait free implementations, irrespective of how many other processes are active or what their state

is, any process that has invoked an operation eventually completes unless it fails itself.

Non-Blocking Implementations

Non-Blocking Implementation comes in between above two properties. It is stronger than obstruction

freedom but weaker than wait freedom. It guarantees that at least one process will make progress

after finite number steps. Some of the advantages(see here.[13]) of this synchronization are

• allows synchronized code to run anywhere(including interrupt handlers)

• is deadlock free

• aids fault tolerance

• eliminates interference between synchronization and scheduling

8
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• can reduce interrupt latency

• aid portability

• increase total system throughput

Still non-blocking implementation is not without limitations. Some of the limitations are (see here.

[13])

• Conceptual Complexity

• Performance: Non-blocking algorithms must guarantee that an object is always in a state

where progress can be made even if the current process dies.

• Unfamiliarity

9
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Chapter 3

Literature

With big computer organization pushing towards multi-core and multi processing architectures, it

is no surprising that research is being done in concurrent data structure. Some of the common data

structures that have gained much interest are doubly linked list, B-trees and AVL trees. Doubly

linked lists are commonly used for other data structures like stack, queues, hash tables and skip

lists. B-trees come into practice where indexing of large data is common. AVL trees on the other

hand are used where performance on search operations is sought.

Designing the concurrent counterparts of these algorithms is more challenging because of the

nature that asynchronous threads work upon the shared memory and it is very essential to ensure

the thread safety. At the same time it is also highly desirable to support progress of as many threads

as possible and reduce the interference among them.

Hillel[18] points out three ways of dealing with the problem. First and probably the worst is

the use of lock whose appalling drawbacks we have seen before. However, with fine grained locking

mechanism, it may not be as sinister as it looks. Second is the lock free implementations which we

will explore in detail in this thesis and the third one is the use of transactional memory(TM).

Transactional memory is an approach extended from the popular approach used in database

transactions. Transaction works on the principle that either all of the operations within a transaction

complete or non of them. High level transactional operations on data items are translated into low

level primitive operations on memory locations by software implementation of transactional memory.

But Hillel[18] confirms that coarse grained implementations of TM aren’t scalable enough where as

fine grained implementations require non trivial amount of extra work.

Improvement in TM could be achieved by implementation with disjoint access parallelism (trans-

actions on disconnected data do not interfere) and invisible reads(reads that do not write to the

memory) which are wait free. But Hillel[18] has further shown that no TM implementation can be

10
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disjoint access parallel and have invisible, wait free read only transactions.

3.1 Universal Transformations

Herlihy[14] has a translation protocol that takes as input the sequential algorithm and produces

equivalent non-blocking concurrent algorithm. His first transformation does the copying of the

entire object, making necessary changes to it and trying to replace the old object by CAS operation.

CAS is explained later in section 4.2. Figures 3.1 through 3.3 elaborate on how only one succeeds

at a time.
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Figure 3.1: P points to object O, threads A and B copy both the object and the pointer. They make
changes to their own copy of O
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Figure 3.2: Thread A and B try to update P so that it points to their copy. B is successful but A
fails. A then copies the pointer and the new object and makes modification to this copy.
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Figure 3.3: Thread A is now successful in making the pointer point to its copy.

For large objects, copying the whole object made this an impractical solution. He then proposed

another transformation protocol. Each data structure is made up of blocks connected by pointers.

Only the blocks which are modified or contain the pointers to the blocks which are to be modified

need to be copied. Again it has some drawbacks, first there was still a lot of copying, second

programmer had to go extra mile to break the structure into proper blocks and third for some data

structure like priority queue implemented as linked list no decomposition performs well.
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3.2 Linked Lists

A linked list is a dynamic data structure where a node has unique neighbors. Linked list can be

singly linked list where each node contains reference to the next node or a doubly linked list where

the node also has the reference to the previous node. Insertion and deletion can take place at any

position in the list. However, these insertions and deletions in concurrent environment can make the

list incorrect.

When we try to delete a node in the middle of a list we update the next pointer of the previous

node to point to the next node of the node to be deleted. During insertion, we make the new node

point to the next node and make the previous node point to the new node.

If we run concurrent insertions and deletions as in Figure 3.4 where a thread say T1 tries to

delete node B while another thread say T2 tries to insert node C. So T1 makes node A point to node

D while T2 makes node B point to node C. After both operations are complete we will have node

A point to node D thus loosing the newly inserted node C. In Figure 3.5, thread T1 tries to delete

node B while thread T2 tries to delete node C. When T1 makes node A point to node C, T2 makes

node B point to node D. Finally, we will have a linked list where node C is still not deleted.

BA D

C

Figure 3.4: Insertion of node C and deletion of node B occurring concurrently in a linked list

BA DC

Figure 3.5: Deletion of node B and node C occurring concurrently in a linked list

To handle such situation Herlihy [15] proposed an general approach. Reference counter is placed

for each pointer to the elements of the list. Deletion is allowed only when the count reaches to zero.

To overcome the overhead of maintaining the reference counts during a visit, Massalin and Pu[26]

restricted the delete operation to safe situation. And they defined the delete operation to be safe if

the deleted node’s pointers continue to point to the nodes that eventually take it back to the main

list where CAS detects change and retries again. So they mark the node for deletion. If the previous

node is not marked, they sit on the previous node and delete it. For better performance, one can

traverse from head to tail deleting all the marked nodes.
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3.3 Binary Search Trees

A binary search tree(BST) implements an abstract dictionary and supports three operations Find(k),

Insert(k) and Delete(k) operations. A BST is said to be leaf oriented if every internal node has

exactly two children and all keys currently in the dictionary are stored in the leaves of the tree. A

leaf oriented BST has the property that for each internal node x, all descendants of the left child of

x have keys that are strictly less than the key of x and all descendants of the right child of x have

keys that are greater than or equal to the key of x. Insertion in a BST replaces a leaf by a sub-tree

of three nodes while deletion deletes the leaf and its parent while making its sibling the child of

former grandparent.

B

A

C

E H

D

G

B

A

C

H

D

G

F

E F

Figure 3.6: BST before and after concurrent insertion and deletion of F and E respectively

In Figure 3.6 some thread say T1 performs deletion of E by making its sibling H as the child of its

grand parent D. At the same time another thread say T2 performs insertion of by replacing the leaf

E with a sub-tree of size three. But the concurrent operations of T1 and T2 create the BST where

the insertion of F is lost. Similarly in Figure 3.7 thread T1 performs deletion of C by making G the

B

A

C

E H

D

G

B

A

C

E H

D

G

Figure 3.7: BST before and after concurrent deletion of C and E

child of B while thread T2 performs another deletion by making H the child of D. These operations

don’t actually perform the deletion of E.
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Although there have been several implementations of BST that use locks Ellen, Fatourou, Rup-

pert and Breugel [11] claim that their is the first complete implementation of a non-blocking BST

in an asynchronous shared memory system using CAS. They stored a separate auxiliary field along

with each key. When a leaf node is to be deleted its parent node is marked. Once a node is marked

any child pointers can’t change.

3.4 Heap

A heap is a complete binary tree in which each node has a priority not less than any nodes in the

sub-tree with itself as the root of the sub-tree. It supports three operation insert(k), delete(), and

read(). As explained in chapter 1 heap could be either min heap or max heap. However, we will

concentrate only on min heap.

5

10 15

15 30 40
50

25
20 35 40 60 45 60 80

30 35 25

insert(12)

Figure 3.8: Insert operation inserts the node at the end of the heap

5

10 15

15 30 40
50

25
20 35 40 60 45 60 80

30 35 25 12

Figure 3.9: Bubble up of the newly inserted node in the heap

The insert(k) operation inserts an item with value k into the heap. For convenience we will

assume the priority to be equal to the value. In figure 3.8, insert(12) operation is invoked and the

item is inserted at the end of the heap as shown in figure 3.9. Since 12 is smaller than 20, the node
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Figure 3.10: Bubble up of the inserted node in the heap
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35 40 60 45 60 80

30 35 25 20

15

12

Figure 3.11: Final heap after insert operation completes.

with value 12 starts to bubble up until it is not smaller than its parent. Figure 3.10 and Figure 3.11

show the bubble up of the node with value 12.

The delete() operation deletes the element at the root of the heap, which is in-fact the one with

smallest element in the heap. In the figure 3.12 delete operation deletes the element at the root of

the heap. The last element from the heap is then brought to the root as in figure 3.12. At this point

the root no longer has the minimum element. So the node at the root starts to bubble down until

non of its children are smaller than itself. This bubble down process is shown in figure 3.13 through

figure 3.16.

Similarly read() operation returns the minimum priority element of the heap. As this element is

stored at the root of the heap, it returns the element at the root of the heap as in figure 3.17.

So far we have explained how a heap would work in a sequential operation. But the case is

different when we are dealing with concurrent operations. If the original heap was as in figure 3.12

and we have two threads T1 performing delete() operation and T2 performing read() operation. After

T1 deletes the root element and copies the last element which is 25 in this case to the root position

as in figure 3.13, T2 comes along and reads and returns 25 as the minimum element. Since these two

operations were overlapping we might assume either T1 or T2 completed first. If T1 had completed

before T2, T2 would return 10. And if T2 had completed first, it would return 5. In either case 25
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delete() = 5

Figure 3.12: Delete operation returns the element from the root and copies the last element to the
root.
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25
20 35 40 60 45 60 80

30 35

25

Figure 3.13: Now the element at the root starts bubble down

would not be the correct answer. So this is obviously not linearizable.

We need a mechanism to let threads communicate with each other whenever they are trying to

work in the same heap. Classical approach would be to lock the heap. Whenever a thread tries to

access the heap, it should first acquire a lock. And if it succeeds in acquiring the lock, it can proceed

further with any update in the heap. And it releases the lock only when it is done with the heap. If

it fails to acquire the lock, then we can make it spin around the lock or implement some wait signal

approach. To improve the performance we might have different kinds of locks for read and write

operations. However, we would be loosing our valuable resources. Say for example when T1 is in

the middle of delete() operation as in figure 3.12, another thread T3 could be waiting for insert(35)

operation. From this point they would never interfere each other. We are really making T3 wait for

nothing.

Herlihy and Shavit[16] tried to improve the approach by using fine grained locks. Rather than

locking the whole heap, they suggested using the locks at the nodes. Locking nodes and its children or

its parent whichever is necessary during bubble down or bubble up but not locking the whole heap.
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Figure 3.14: Bubble down of the larger element continues.
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Figure 3.15: Bubble down still needs to be carried on.

This approach certainly improves the performance as two threads which are working at different

branches of the heap never have to wait for each other. But as they are using locks, this approach

isn’t free from having to wait for another thread which holds the lock and is too slow or dies while

still holding the lock. As an example we can refer to the figure 3.18. Here threads T1 and T2 are

middle of the operation delete() and are currently undergoing bubble down. However, at this point

T2 has to wait for T1 as T1 holds the lock needed by T2. But if T1 takes a long time to complete or

crashes while still holding the lock and T2 may be waiting for ever.

Israeli and Rappoport[20] gave a non-blocking implementation which supports deleteMin and

insert operations using some strong atomic primitives which they claim could be built using trans-

actional memory. They have suggested an approach of using some bits from the value to contain

the information required for stating the operation currently being carried out with that node. With

such information stored, even if the process dies, another thread which comes across this node can

help it with the operation. In the figure 3.18 even if T1 crashes while trying to perform some oper-

ation on the node, T2 can help it by observing the bits allocated for representing the information of

the node. So a thread has to write this information before performing the actual operation. This

algorithm has made a significant effort towards making the algorithm a non-blocking one. However,

they haven’t given any algorithm for read() operation. And we have provided a wait free approach
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Figure 3.16: Final heap after delete operation completes.
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readMin() = 5

Figure 3.17: readMin operation returns the element at root.

for this operation. Also they have reserved certain bits from the value to store the information

about the operation on the node. This lowers the range of values that can be stored in the node.

We avoided this constraint by storing these extra information in separate word.
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Figure 3.18: Thread T2 is waiting for the lock held by thread T1.
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Chapter 4

Model

We have considered the asynchronous shared memory model as the system where the data structure

will be used. The system should also support Compare and Set(CAS) and Double Compare and

Set(DCAS) primitive operations by hardware. The data structure can be accessed by multiple

threads at the same time. We will discuss in this chapter how the heap is represented and what

information is stored at each node.

4.1 Data Representation

We are implementing heap using arrays. The root of the heap at index 1 of the array. All nodes

of the heap have two words stored per node. One for the value(priority) and the other for the

information. To make it easier to handle two words at each location in array, we use two arrays.

One of the array is called heap which stores the value while the other array stores information. Now

for accessing the information associated with the node we use node.info. If the node is located at

the index 5, node.info would point to 5th index of the array containing information about the node.

0631

Status Owner
Operation

Value

Figure 4.1: Information stored per node

As shown in the figure 4.1 the information word contains three values. The lowest 6 bits indicate

the operation associated with the node. If these bits value is equal to zero then no operation is being

carried out. Then next 25 bits indicate the owner of the node. Here the owner represents the thread
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id. If these bits value is equal to zero then no thread has owned the node. The most significant bit

is the status bit. This bit is set to 1 for all nodes which are in the heap and set to 0 if the node gets

deleted.

Each thread also has certain information stored with it. Associated with each thread are three

things: information, value and size of the heap. The word in information holds three values. Just

like the information in the node, information field has operation(6 least significant bits) followed by

node id which occupies next 25 bits and hold the index of the node in the heap on which the thread

is working upon and most significant bit represents the status. Value 1 in the status represents that

the thread is still interested in the heap while 0 indicates that the thread is done using the heap.

0631

Status OperationNode

heapSize

Value

Figure 4.2: Information stored per Thread

Now the value field stores the value the thread is either going to insert or the value it has deleted.

This is required because other thread which want to help this thread in inserting its value in the

heap should be able to figure out which value was to be inserted. Similarly if they help in deleting a

node, it should be able to figure out which value was deleted. Finally, heapSize stores the size of the

heap just before it started deleting the node. As there could be many threads working concurrently

in the heap, the size of the heap keeps on changing. So other threads which want to help it, should

know which node it was planning to swap to the root.

Thread with ID = 5 will have its information stored at owner[5]. Its value will be stored at value[5]

and accessed as 5.value while its heapSize is stored at heapSize[5] and accessed as 5.heapSize(). While

a thread can access any values of from any other threads, it can also write to any arrays of other

threads except the heapSize array. Thread with id = 5 can write to any location in owner and value

array but in heapSize array it can only write to heapSize[5] location.

4.1.1 Global Variables

Operations

1: GETMINV AL← 000001

2: COPY LAST ← 000010

21



www.manaraa.com

3: HELPDOWN ← 000011

4: ADDV AL← 000100

5: HELPUP ← 000101

6: SWAPUP ← 000110

7: SWAPDOWN ← 000111

Nodes

1: UNLOCKEDNODE ← 10000000000000000000000000000000

2: EMPTY NODE ← 00000000000000000000000000000000

Threads

1: OWNERDONE ← 00000000000000000000000000000000

Status

1: ACTIV E ← 1

2: PASSIV E ← 0

3: DONE ← 0

Child ID

1: LEFT ← 0

2: RIGHT ← 1

4.2 Primitive Operations

4.2.1 Compare and Set

CAS(Compare and Set)[19] sometimes called Compare-and-Swap instruction compares the value in

a memory location with a value in a data register and copies a second data register into a memory

location if the compared values are equal. After CAS has read a value from the memory no other

instruction can change that memory location until CAS is done with writing at the location. In

single processor system, the operation is protected from interrupts while in multi processor system

all other processing wishing to access the global pointer must wait until the CAS completes.

22



www.manaraa.com

Procedure 1 CAS(*addr, expectedValue, newValue)

if *addr = expectedValue then
*addr ← newValue
return true

end if
return false

4.2.2 Double Compare and Set

DCAS[19] is commonly called double compare and set and sometimes referred to as CAS2. The

DCAS instruction is similar to the CAS instruction except that it performs two comparisons and

updates two variables when the results of the comparisons are equal. If the results of both com-

parisons are equal, DCAS copies new values into the destination addresses and returns true. If the

result of either comparison is not equal then it returns false. Thus we see that this operation is a

stronger than CAS(Compare and Set) which is available in almost all modern architectures. Unlike

CAS, DCAS is not very common with modern architectures. It is supported by Motorola 68k family

of processors. A canceled Rock Processor[4] from Sun would also have supported DCAS.

Procedure 2 DCAS(*addr0, expVal0, newVal0, *addr1,expVal1,newVal1)

if ((*addr0 = expVal0) and (*addr1 = expVal1)) then
*addr0 = newVal0
*addr1 = newVal1
return true

end if
return false

Hardware implementation of DCAS had been found to be somewhat slow so an alternative

approach for software implementation for DCAS was also suggested by Brian[3]. He suggested the

use of lock known to the operating system to implement DCAS. If a process which has a lock looses

CPU due to context switch, the operating system rolls back the process out of DCAS procedure and

releases the lock. However Michael[12] points out some of the issues with this approach. First it

needs to use the locks. Second, one needs to be more careful when asynchronized reads need to be

supported because it is likely that readers might see intermediate values which could later be rolled

back.

Execution of these instruction as one atomic block makes it a strong primitive and also might

make it costly in terms of execution speed. Still Simon[10] points out that DCAS doesn’t provide

any sufficient additional power over CAS to implement a non-blocking data structure so he suggested

the use of further strong primitives like multi-word compare and swap. However, we have managed

to implement heap using DCAS operations only.
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Chapter 5

Subsidiary Operations

We have three operations readMin, deleteMin and insert to be performed in the heap. These

operations are long and complex. So we have added a number of other operations which are used to

implement these operations. The necessity to create these subsidiary operations is justified as these

operations need to be called multiple times within the main operations.

5.1 getParent

This procedure is used to get the parent node of a node. In an array based implementation where

the root node is at heap[1],child of any node at heap[i] is at heap[2*i] and heap [2*i+1]. So we can

figure out the parent once a child node is given.

Procedure 3 getParent(node)

parent ← bnode2 c
if parent < 1 then

return null
else
return parent

end if

5.2 getChild

Index of the left of right child for a node with given index is returned unless the child is outside the

range of the heap size. If it is outside the heapSize it returns false.
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Procedure 4 getChild(node,heap,childId)

if childId = LEFT then
child ← 2× node

else
child ← 2×node + 1

end if
heapSize ← heap.size
if child > heapSize then
return null

else
return child

end if

5.3 getOwner

This method extracts the operation field (from bit 0 to bit 5)from the info field and returns the

same.

Procedure 5 getOperation(info)

Operation ← info & 31
return operation

5.4 setOwner

This method return the info word with the operation field replaced by the operation. For this we

first set the bits representing operation by 0 and then we use bit wise or operation on it with the

operation.

Procedure 6 setOperation(info,operation)

newInfo ←info & 4,294,967,232
newInfo ← newInfo | operation
return newInfo

5.5 getOperation

This method is used to return the value of the bits indicating owner field. The bits representing

owner are the 6th to 30th bits.
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Procedure 7 getOperation(info)

nodeOwner ← info � 1
nodeOwner ← nodeOwner � 6
return nodeOwner

5.6 setOperation

This method is used to change the value of the bits indicating owner field. The bits representing

owner are the 6th to 30th bits.

Procedure 8 setOwner(info,operation)

owner ← owner � 6
info ← info & 2,147,483,711
info ← info |owner
return info

5.7 getNode

This method returns the node which the thread is actually working upon. While a thread may also

own two nodes at the same time, it is sufficient in our algorithm to store only the first one.

Procedure 9 getNode(ownerInfo)

node ← ownerInfo � 1
node ← node � 6
return node

5.8 setNode

This method updates the info field of the thread by replacing the bits 6th through 30th.

Procedure 10 setNode(ownerInfo,node)

node ← ownerInfo � 6
info ← info & 2,147,483,711
info ← info |node
return info

5.9 getStatus

This method is used to both return whether the thread is done with the heap or not. This information

is stored in the most significant bit of the info field.
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Procedure 11 getStatus(info)

status ← info � 31
return status

5.10 swapValues

This method takes two nodes, their corresponding info fields and the corresponding values. First

the info field of the nodes are changed as in Figure 5.2 to reflect that it is in the process of swapping

and its owners field are also changed at the same time.

Heap[8] Active | B | HelpUp 

15

nodeInfo

37

Active | A | HelpDown 
Heap[4]

nodeInfo

Active | 8 | HelpUp 

threadInfo

Thread[B]

threadInfo

Thread[A] Active | 4 | HelpDown 

newInfo : Active | B | SwapDown   

newChildInfo : Active | A | SwapUp   

Local Computations

newOwnerInfo : Active | 8 | HelpDown

newChildOwnerInfo : Active | 4 | HelpUp

Figure 5.1: Nodes just before updating the intention to swap

Then the values are swapped. Above two are performed only if other threads haven’t swapped

the values yet. This checking is performed by comparing the values. Now the values being swapped,

The respective info fields of the owners are changed as seen in Figure 5.4 so that they point to the

new nodes. Finally the intention to swap the node is removed by changing the SWAPUP and

SWAPDOWN field by HELPUP and HELPDOWN field respectively.
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Active | 8 | HelpUp 

threadInfo

Thread[B]

threadInfo

Thread[A] Active | 4 | HelpDown 

newInfo : Active | B | SwapDown   

newChildInfo : Active | A | SwapUp   

Local Computations

newOwnerInfo : Active | 8 | HelpDown

newChildOwnerInfo : Active | 4 | HelpUp

nodeInfo

37

Heap[4]
Active | B | SwapDown 

nodeInfo

Heap[8]

15

Active | A | SwapUp 

Figure 5.2: Nodes just after updating the intention to swap

Active | 8 | HelpUp 

threadInfo

Thread[B]

threadInfo

Thread[A] Active | 4 | HelpDown 

newInfo : Active | B | SwapDown   

newChildInfo : Active | A | SwapUp   

Local Computations
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newChildOwnerInfo : Active | 4 | HelpUp

nodeInfo
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Heap[8] Active | A | SwapUp 

15

37

Figure 5.3: Now the values are swapped

nodeInfo

Heap[4]
Active | B | SwapDown 

nodeInfo

Heap[8] Active | A | SwapUp 

15

37

Local Computations

newOwnerInfo : Active | 8 | HelpDown

newChildOwnerInfo : Active | 4 | HelpUp

newInfo : Active | B | HelpUp   

newChildInfo : Active | A | HelpDown   

threadInfo

Thread[A]

threadInfo

Thread[B]

Active | 8 | HelpDown 

Active | 4 | HelpUp 

Figure 5.4: Owner information is updated.
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nodeInfo

Heap[4]

nodeInfo

Heap[8]

15

37

Local Computations

newOwnerInfo : Active | 8 | HelpDown

newChildOwnerInfo : Active | 4 | HelpUp

newInfo : Active | B | HelpUp   

newChildInfo : Active | A | HelpDown   

threadInfo

Thread[A]

threadInfo

Thread[B]

Active | 8 | HelpDown 

Active | 4 | HelpUp 

Active | B | HelpUp 

Active | A | HelpDown 

Figure 5.5: Finally the node info is updated

Procedure 12 swapValues(node,childNode,nodeInfo,childInfo,nodeValue,childValue)

owner ← getOwner(nodeInfo)
childOwner ← getOwner(childInfo)
newInfo ← setOperation(childInfo,SWAPDOWN)
newChildInfo ← setOperation(nodeInfo,SWAPUP)
if owner >0 then

ownerInfo ← owner.info
newOwnerInfo ← setNode(ownerInfo,childNode)

end if
if childOwner >0 then

childOwnerInfo ← childOwner.info
nChildOwnerInfo ← setNode(childOwnerInfo,node)

end if
if nodeValue >childValue then

DCAS(node.info,nodeInfo,newInfo,childNode.info,childInfo,newChildInfo)
DCAS(node.value,nodeValue,childValue,childNode.value,childValue,nodeValue)

end if
if owner >0 and childOnwer >0 then

DCAS(owner.info,ownerInfo,newOwnerInfo,childOwner.info,childOwnerInfo,nChildOwnerInfo)
childInfo ← setOperation(newChildInfo,HELPDOWN)
info ← setOperation(newInfo,HELPUP)

else
if childOwner <1 then

CAS(owner.info,ownerInfo,newOwnerInfo)
info ← UNLOCKEDNODE

else
CAS(childOwner.info,childOwnerInfo,nChildOwnerInfo)
childInfo ← UNLOCKEDNODE

end if
end if
DCAS(node.info,newInfo,info,childNode.info,newChildInfo,childInfo)
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5.11 helpDown

This method is used for bubbling down the larger values. It finds out the minimum values in the

sub-trees rooted at both its children. Refer to section 6.1 for details on how to find the minimum in

a sub-tree. If it is the smaller than the the minimum values from both sub-trees, it knows that it

doesn’t need to propagate any further. So it stops here and modifies the corresponding information.

Refer to Figure 5.6 through Figure 5.9 for few examples.

15

Active | A | HelpDown 

Null

empty | 0| 0

Null

empty | 0| 0

Figure 5.6: It is the leaf node. So, it can remove the ownership and change the owner information.

15

Active | A | HelpDown 

17

Active | B| HelpDown

1716

Active | D | HelpUp Active | 0 | 0

17

19

Active | E| SwapUp

18

Active | C | SwapDown

Active | F | HelpUp 

Figure 5.7: It finds out that it has the smallest value in its entire sub-tree. So, it can remove the
ownership and change the owner information.

Otherwise, it marks the child with which it needs to work with. If the operation in that node

is HELPDOWN or SWAPDOWN, it helps the node otherwise, it simply swaps the child node with

itself.
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Procedure 13 helpDown(node,nodeInfo)

ownerInfo ← owner.info
ownerStatus ← getStatus(ownerInfo)
nodeVal ← node.value
nodeInfo ← node.info
leftChild ← getChild(node, LEFT )
if leftChild = null then

DCAS(owner.info,ownerInfo,OWNERDONE,node.info,nodeInfo,UNLOCKEDNODE)
return

end if
leftMin ← readMin(leftChild)
leftChildInfo ← leftChild.info
rightChild ← getChild(node,RIGHT )
if rightChild 6= null then

rightChildInfo ← rightChild.info
rightMin ← readMin(rightChild)

else
rightMin ← POSITIVEINFINITY

end if
if (nodeVal ≤ leftMin) and (nodeVal ≤ rightMin) then

DCAS(owner.info,ownerInfo,OWNERDONE,node.info,nodeInfo,UNLOCKEDNODE)
return

else
if leftMin ≤ rightMin then

minNode ← leftChild
else

minNode ← rightChild
end if

end if
childInfo ← minNode.info
childValue ← minNode.value
childOwner ← getOwner(childInfo)
childOperation ← getOperation(childInfo)
if childOperation = HELPDOWN or SWAPDOWN then

helpNode(minNode,childInfo)
else
swapV alues(node,minNode, nodeInfo, childInfo, nodeV alue, childV alue)

end if
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Active | A | HelpDown 
 1

Active | F | HelpUp 

Active | 0 | 0 

Active | E| HelpUp

13
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Active | B| HelpDown

Active|D|HelpUp.

16

Active | 0 | 0 
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Figure 5.8: Once it encounters the a node that is not owned by any thread, it can stop looking
for minimum value in the sub-tree. Here again, it can remove the ownership and change the owner
information.
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17

Active | F | HelpUp 

Active | 0 | 0 

Active | E| HelpUp

9 13

19
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Figure 5.9: It finds out that minimum lies in the left sub-tree. So it has to help the left child.
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5.12 helpUp

This method is used whenever a node needs to bubble up. For this purpose, parent of the node is

identified. If the helpUp operation is found in the root as in Figure 5.10 then information of the root

and that of the owner are updated to reflect the completion of job. If the parent is not owned by

15

Active | A | HelpUp 

..........

...................

..............

......................

Figure 5.10: a case with helpUp operation on a root.

anybody or if it is owned and the operation in the info field is HELPDOWN then the parent value

is compared with its value and two nodes are swapped if the parent value is smaller than it value.

However, if the parent value is less than its value, completion status is updated in the owner of the

field and the one being helped up. In Figure 5.11 we see that node 2 finds out that its parent(node

1) is locked with helpDown operation but parents value is smaller than its value. So, it can safely

update the info of node 2 and that of its owner B to reflect the completion of job. In the same figure

node 7 finds out that its parent(node 3) is not owned but its own value is smaller than its parent’s.

So node 7 will start the swap operation with its parent.

15

Active | A | HelpDown 
 1

Active | F | HelpUp 

Active | 0 | 0 

Active | E| HelpUp

13

Active | B| HelpUp

19

......................

................... ...................

....................

17

9

 2  3

 4  5  6  7

Figure 5.11: a case with helpUp operation where a swapping is required.

But if the parent is owned by some node and operation to be performed is HELPUP, then the

node tries to help the parent node. In Figure 5.12 node 2 will need to perform swapValues operation

with its parent but node 7 will have to help its parent(node 3) because the parent is owned and has

to swap the values with node 6.
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 1

Active | F | HelpUp 

Active | B| HelpUp
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................... ...................

....................

9

 2  3

 4

Active | E| SwapUp

Active | C | SwapDown 

13

1711

 5  6  7

Figure 5.12: a case with helpUp operation where parents needs to be helped first.

Procedure 14 helpUp(node,nodeInfo)

1: parent ← getParent(node)
2: if parent = null then
3: DCAS(owner.info,ownerInfo,OWNERDONEINFO,node.info, nodeInfo,NODEDONEINFO)
4: end if
5: parentValue ← parent.value
6: nodeValue ← node.value
7: parentInfo ← parent.info
8: nodeInfo ← node.info
9: parentOwner ← getOwner(parentInfo)

10: parentOwnerInfo ← parentOwner.info
11: ownerInfo ← owner.info
12: parentOperation ← getOperation(parentInfo)
13: if (parentOwner = UNLOCKEDNODE) or (parentOperation = HELPDOWN) then
14: if parentValue > nodeValue then
15: swapValues(parent,node,parentInfo,nodeInfo,parentValue,nodeValue)
16: else
17: DCAS(owner.info,ownerInfo,OWNERDONEINFO,
18: node.info, nodeInfo,NODEDONEINFO)
19: end if
20: else
21: helpNode(parent,parentInfo)
22: end if
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5.13 helpNode

This method takes node and info of the node as two arguments. It checks what operations need to

be helped for the node and it performs tasks accordingly. During deleteMin and insert operations a

several intermediate steps are required. Write to a shared variable during such intermediate steps

is visible to others and other nodes should be able to figure out how exactly to help the node which

is in one of those intermediate stages. We have already seen the details of helpUp and helpDown

operations. This helpNode operation helps the node which is stuck in any of the intermediate stages.

Now we discuss helping for each such intermediate stages.

GETMINVAL

A helper thread may find the operation GETMINVAL in the root node. A helper thread say thread

B could be the one performing or helping one of the children of the root or a new thread trying to

perform delete operation on the heap. If the operation field of the root has the value GETMINVAL,

it indicates that a thread say thread A is in the middle deleteMin operation. And it has successfully

owned the root node and decreased the heap size. Also it has copied the value of the root node as

the minimum value to its private location. Also the node has already copied the size of the heap

just before decreasing the heap size. However, this value is written to a place where only the thread

initiating the deleteMin operation can write and any other threads can read. This is done to allow

the helper threads to copy that last node to the root and bubble down.

Now, the next immediate job thread B has to perform is to own that last node for thread A.

Thread B reads the heapSize value from thread A to identify the node it has to own. If that node is

not owned by anybody, it changes the information of the last node to make to reflect the new owner

and also the next operation to be performed. Just to make sure that it is not too late for thread

B to help thread A, B also checks that nothing has been changed to the root. However, if the last

node is already owned by some other thread say thread C and thread C is going to perform helpUp

operation on the last node then thread B releases thread C of its duty and owns the last node for

thread A. It doesn’t make the heap inconsistent because finally this value will bubble down from

the root to its correct place. However, if thread C is performing some other operation say swap or

helpDown thread B helps thread C.
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COPYLAST

A helper thread may find the operation COPYLAST in the last node. A helper thread say thread

B finding the the operation in last node to be COPYLAST indicates that thread B could be trying

to insert a new node in the heap or is trying to help some other thread say thread A. Thread A on

the other hand is in the middle of the operation deleteMin. By this time both the root node and

the last node have been owned by thread A.

Now thread B helps thread A by copying the value from the last node to the root and writing

this information in the thread A’s shared memory. This is done only if no other thread or thread A

itself hasn’t done this. Having done this thread B now turns the last node to be an empty node and

changes the information in the root node so that any other thread trying to own root know that the

next thing they need to do is help thread A with the operation helpDown.

HELPDOWN

A helper thread may need to help another thread which needs to bubble down the heap. In this

case helper thread follows the helpDown as shown inf Procedure 5.11.

ADDVAL

When some thread say thread B discovers that an operation on a node by another thread say A

is ADDVAL, thread B knows that thread A was in the middle of insert operation and has already

owned the node and also increased the. heap size.

Now, thread B can help thread A by copying the value thread A intended to insert into the node

value. Once this insertion of the value in to the node is done, thread B updates the information of

the node and that of thread A to reflect that the next job to be performed is helpUp.

Thread B could have gone sleeping or somehow taken a longer period in between these steps.

At the same time many other threads could have tried to help thread A. Many of them may be

successful in inserting the value into the thread but only one of them will succeed in updating the

information of the node and thread A.
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HELPUP

A helper thread may need to help another thread which needs to bubble up in the heap. In this

case helper thread follows the helpUp as shown inf Procedure 5.12.

SWAPDOWN

A helper thread say thread B if finds out that the node is owned by some other thread say thread A

and operation in the node is SWAPDOWN, then it is clear that thread A is undergoing bubble up

and it is at the moment in the middle of swapping the node owned by some other thread say thread

C. By this time the owners of the nodes have swapped their ownership.

So thread B has to find out which child of the node was actually previously owned by thread

A(before swapping the ownership with thread C). The child node which was previously owned by

thread A has the operation SWAPUP. Thread B then tries to swap the values of those nodes. How-

ever some other threads might have already helped in swapping the values. Thread B only helps in

swapping the values if the parent node has higher value than its child node. Otherwise thread B

assumes that some other thread has already helped in swapping the values.

Once the values are swapped, now the information of the thread A and thread C are changed

to reflect the correct node they now point to. Finally, the information of the corresponding nodes

are updated to reflect that the parent now should continue helpUp (bubble up) operation and child

should continue helpDown (bubble down) operation.

SWAPUP

This is very much similar to the swapDown operation.A helper thread say thread B if finds out

that the node is owned by some other thread say thread A and operation in the node is SWAPUP,

then it is clear that thread A is undergoing bubble down and it is at the moment in the middle of

swapping the node owned by some other thread say thread C. By this time the owners of the nodes

have swapped their ownership.

Thread B then tries to swap the values of the node with that of its parent node. However some

other threads might have already helped in swapping the values. Thread B only helps in swapping

the values if the parent node has higher value than its child node. Otherwise thread B assumes that
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some other thread has already helped in swapping the values.

Once the values are swapped, now the information of the thread A and thread C are changed

to reflect the correct node they now point to. Finally, the information of the corresponding nodes

are updated to reflect that the parent now should continue helpUp (bubble up) operation and child

should continue helpDown (bubble down) operation.
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Procedure 15 helpNode(node,nodeInfo)

nodeOwner ← getOwner(nodeInfo)
nodeOperation ← getOperation(nodeInfo)
nodeValue ← node.value
if (nodeOperation = GETMINVAL then

goto GETMINV AL
end if
if (nodeOperation = COPYLAST then

goto COPY LAST
end if
if (nodeOperation = HELPDOWN then

goto HELPDOWN
end if
if (nodeOperation = SWAPDOWN then

goto SWAPDOWN
end if
if (nodeOperation = SWAPUP then

goto SWAPUP
end if
if (nodeOperation = ADDVAL then

goto ADDV AL
end if
if (nodeOperation = HELPUP then

goto HELPUP
end if
GETMINVAL:
heapSize ← nodeOwner.heapSize
lastNode ← HEAP[heapSize]
lastInfo ← lastNode.info
lastOperation ← getOperation(lastInfo)
lastOwner ← getOwner(lastInfo)
nNodeInfo ← setOwner(lastInfo,nodeOwner)
nNodeInfo ← setOperation(nNodeInfo,COPYLAST)
if lastOperation = HELPUP then

lastOwnerInfo ← lastOwner.info
DCAS(lastNode.info,lastInfo,nNodeInfo,
lastOwner.info,lastOwnerInfo,OWNERDONE)

else
if lastInfo = UNLOCKEDNODE then

DCAS(lastNode.info,lastInfo,nNodeInfo,node.info,nodeInfo,nodeInfo)
else

helpNode(lastNode,lastInfo)
end if

end if
return
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COPYLAST:
rootValue ← nodeOwner.minValue
rootInfo ← root.info
nodeOwner ← getOwner(nodeInfo)
ownerInfo ← nodeOwner.info
if getOperation(ownerInfo) = GETMINVAL then

nOwnerInfo ← setOperation(OwnerInfo,HELPDOWN)
DCAS(nodeOwner.info,OwnerInfo,nOwnerInfo,root.value,rootValue,nodeValue)

end if
if getOperation(rootInfo) = GETMINVAL then

nRootInfo ← setOperation(rootInfo,HELPDOWN)
DCAS(root.info,rootInfo,nRootInfo,node.info,nodeInfo,EMPTYNODE)

end if
return
HELPDOWN:
helpDown(node,nodeInfo)
return
ADDVAL:
value ← nodeOwner.value
DCAS(node.info,nodeInfo,nodeInfo,node.value,nodeValue,value)
newNodeInfo ← setOperation (info,HELPUP)
newOwnerInfo ← setOperation (ownerInfo,HELPUP)
newOwnerInfo ← setNode (newOwnerInfo,node)
DCAS(self.info,ownerInfo,newOnwerInfo,node.info,info,newNodeInfo)
return
HELPUP:
helpUp(node,nodeInfo)
return
SWAPDOWN:
leftChild ← getChild(node,LEFT)
childInfo ← leftChild.info
childOperation ← getOperation(childInfo)
if childOperation = SWAPUP then

childNode ← leftChild
else

rightChild ← getChild(node,RIGHT)
childInfo ← rightChild.info
childOperation ← getOperation(childInfo)
if childOperation = SWAPUP then

childNode ← rightChild
else

return
end if

end if
childValue ← child.value
if nodeValue >childValue then

DCAS(node.value,nodeValue,childValue,childNode.value,childValue,nodeValue)
end if
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newInfo ← setOperation(nodeInfo,HELPUP)
newChildInfo ← setOperation(childInfo,HELPDOWN)
ownerInfo ← nodeOwner.info
childOwnerInfo ← childOwner.info
ownerNode ← getNode(ownerInfo)
childOwnerNode ← getNode(childOwnerInfo)
newOwnerInfo ← setNode(ownerInfo,childNode)
nchildOwnerInfo ← setNode(newOwnerInfo,node)
if ownerNode = childNode and childOwnerNode = node then

DCAS(nodeOwner.info,ownerInfo,newOwnerInfo,
childOwner.info,childOwnerInfo,nChildOwnerInfo)

end if
DCAS(node.info,nodeInfo,newInfo,childNode.info,childInfo,newChildInfo)
return
SWAPUP:
parent ← getParent(node)
parentInfo ← parent.info
parentOperation ← getOperation(parentInfo)
if parentOperation 6= SWAPDOWN then

return
end if
parentValue ← parent.value
if nodeValue <parentValue then

DCAS(node.value,nodeValue,parentValue,parent.value,parentValue,nodeValue)
end if
newInfo ← setOperation(nodeInfo,HELPDOWN)
newParentInfo ← setOperation(parentInfo,HELPUP)
ownerInfo ← nodeOwner.info
parentOwnerInfo ← parentOwner.info
ownerNode ← getNode(ownerInfo)
parentOwnerNode ← getNode(parentOwnerInfo)
newOwnerInfo ← setNode(ownerInfo,parent)
nParentOwnerInfo ← setNode(parentOwnerInfo,node)
if ownerNode = parent and parentOwnerNode = node then

DCAS(nodeOwner.info,ownerInfo,newOwnerInfo,
parentOwner.info,parentOwnerInfo,nParentOwnerInfo)

end if
DCAS(node.info,nodeInfo,newInfo,parentNode.info,parentInfo,newParentInfo)
return
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Chapter 6

Operations

So far we have discussed the data representation, hardware primitives and subsidiary procedures.

Now we are ready to implement the main operations readMin, deleteMin and insert. These opera-

tions are the ones that will be visible to the users of the data structure.

6.1 readMin operations

This method finds the likely minimum value propagating towards root in the sub-tree rooted at the

given node. If the node is not locked, it returns the value held by the node. Even if the node is

locked and the operation being performed is HELPUP, it implies that the node is being propagated

up, so it is safe to return this value as the minimum value of the sub-tree rooted at the node. This

doesn’t violate the linearizability property.

However, if the node is locked and the operation is not HELP UP then minimum values are found
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Active | B| HelpUp Active | C | SwapDown 
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Figure 6.1: a case of readMin operation on the tree

in both sub-trees. Then the minimum value among itself and sub-trees rooted at its children is

returned as the minimum value. If the node is locked and the operation is not HELPUP, it is likely
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that some minimum value is residing below it and the node was just in the process of bubbling down.

So we had to look at its children too.

In Figure 6.1 Node 1 is locked so it seeks minimum values from both its child nodes(ie node

2 and node 3). Node 2 is owned by thread B with operation helpUp so it doesn’t need to check

for any values in its children and returns 11. Although we see that node 9 has the lowest value

7, it was valid for node 2 to return 11 as it can be assumed that addition of node 9 is done later

than the readMin operation. At the same time node 3 seeks minimum from its children. Although

both its children are owned by different threads, node 6 can return its value 12 because the value

is propagating upwards. Same is the case with node 7. Now node 3 upon receiving values from its

children computes the minimum value among its own value and those from the children. So it sends

12 as the minimum value to its parent node 1. Node 1 finally return 11 as the min value.
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Active | 0|0
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15

Active | 0 | 0 
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Figure 6.2: another case of readMin operation on the tree

Again in Figure 6.2 readMin operation at node 1 would return its own value ie 15 although there

are so many smaller values in its sub-tree. But is is okay for node 1 to return its own value it is

because node 1 is not owned by any other threads. All the smaller values which are in its sub-tree

are still propagating upwards which means their insertion is not complete yet. So, it can be assumed

that those insertion happened after the read min operation.

We see that the readMin operation is both non-blocking and wait free.
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Procedure 16 readMin(node)

info ← node.info
value ← node.value
operation ← getOperation(info)
if (info = UNLOCKEDNODE) or (operation = HELPUP or SWAPUP) then

return value
else

leftChild ← getChild(node,LEFT)
if leftChild = null then

return value
end if
leftVal ← readMinVal(leftChild)
rightChild ← getChild(node,RIGHT)
if rightChild = null then

rightVal ← POSITIVEINFINITY
else

rightVal ← readMinVal(rightChild)
end if
if value ≤ leftVal and value ≤ rightVal then

return value
else
if leftVal ≤ rightVal then

return leftVal
else

return rightVal
end if

end if
end if
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6.2 insert operation

This method is used for adding a new node with a given value. It prepares the info field for the node,

and gets the heap size. Using DCAS operation it updates the heap size and the info field. Now again

it makes changes to the operation section of the info field and uses DCAS to update the value of the

newly added node and the info field. Now the node has been added. Another DCAS is required to

update the info field of the thread wishing to insert the node. Now the newly inserted nodes needs

to bubble up. Until the owner is done, it helps the node to propagate up. Sometimes even
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Figure 6.3: A heap with size 5.
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Figure 6.4: Intermediate stage of the heap during deleteMin operation.
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Figure 6.5: insert operation before the deleteMin operation completes.
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after increasing the heapSize, it may not be a good idea to insert the node immediately to the last

position. We will need to check if the position is empty. Consider the following case as in the Figure

6.3. Here the heap size is 5. Then comes thread A which starts performing deleteMin operation

on the heap. The heap size changes to 4. However, it has not finished the operation deleteMin.

The resultant heap is shown in Figure 6.4. In the mean time another thread say thread G starts its

insert operation as in Figure 6.5. It increments its heap size to 5. G creates a separate node but

it doesn’t replace the node 5 which has not been free yet. So it needs to help the operation by E

or the operation by A(which will soon copy the node to the root) before replacing the node by its

node. Again, there could be couple of more threads lined up to replace the node 5. Only one of

them succeeds. Others will keep on helping the one which successfully owns the node.

Procedure 17 insert(heap,value)

info ← setStatus(BLANKINFO,ACTIVE)
info ← setOperation(info,ADDVALUE)
info ← setOwner(info,self)
while TRUE do

size ← heap.Size
newSize ← size+1
node ← HEAP[newSize]
nodeInfo ← node.info
nodeStatus ← getStatus(nodeInfo)
if nodeStatus = ACTIVE then

helpNode(node,nodeInfo)
else

nodeValue ← node.value
ownerInfo ← self.info
if DCAS(heap.size,size,newSize,node.Info,BLANKNODE,info) then

break
end if

end if
end while
DCAS(node.info,info,info,node.value,nodeValue,value)
newNodeInfo ← setOperation (info,HELPUP)
newOwnerInfo ← setOperation (ownerInfo,HELPUP)
newOwnerInfo ← setNode (newOwnerInfo,node)
DCAS(self.info,ownerInfo,newOnwerInfo,node.info,info,newNodeInfo)
while TRUE do

ownerInfo ← self.info
ownerStatus ← getStatus(ownerInfo)
nodeInfo ← node.info
if ownerStatus = DONE then

break
else

helpUp(node,nodeInfo)
end if

end while
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6.3 deleteMin Operation

This method is used to delete the highest priority element from the heap. If the heap doesn’t contain

any elements it returns error. So it first tries to own the root of the heap. If the heap is owned by

some other thread it tries to help that thread. After trying to help the thread it again tries to own

the root. Claiming the ownership of the root and decreasing the heap size is done atomically. At

each trial, it also copies the size of the heap before decrement and the value of the root to its own

space which can’t be modified by any other thread. If the snapshot of the heap just before Thread

A tries to perform deleteMin operation was as in Figure 6.6 then after owning the root the snapshot

would be as shown in the Figure 6.7.

 1

11
 2

Active | B| HelpUp

 5 4

Active | E| HelpUpActive | 0|0

15

Active | 0 | 0 

16

 3
17

Active | 0|0 

9

Heap Sise = 5

0 |0|0 
Thread[A] 

Figure 6.6: snapshot of a heap before deleteMin operation.
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Active | A | GETMINVAL 
1  | 1 | GETMINVAL 
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Figure 6.7: snapshot of a heap after decreasing the heap size.
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Thread[E] 
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0  | 0 | 0 
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Figure 6.8: snapshot of a heap after getting the ownership of the last node.

Now the next job for the thread A is to try claiming the ownership of the last node. If the

last node is owned by some other thread and the operation in the last node is HELPUP, then the
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Figure 6.9: snapshot of a heap after the root is given the value from the last node.
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Figure 6.10: snapshot of a heap after the last node is declared empty.

information of the owner of the last node is changed to DONE and it owns the last node. Snapshot

of the heap at this point could be something like Figure 6.8. The job gets easier if the last node is not

owned by anybody. In that case it just has to change get the ownership of the last node.However, if

the last node is already owned by some other threads then it has to help that thread before it can

get the ownership.

Now, the value held by the last node is copied to the root node. Also the information stored by

the thread is changed so that its operation field reflects HELPDOWN. Snapshot of the heap at this

point might appear something like the Figure 6.9.

The thread now clears the information of the last node to reflect that it is an empty node and

at the same time it also changes the information stored at the root that next operation it needs to

under go is HELPDOWN. Now the normal business of helpDown carries on as described in section

5.11.
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Procedure 18 deleteMin(heap)

while true do
heapSize ← heap.size
if heapSize < 1 then
return error

end if
self.info ← setOperation(setNode(UNLOCKEDNODE,root),GETMINVAL)
rootInfo ← root.info
if rootInfo=UNLOCKEDNODE then

nRootInfo ← setOwner(rootInfo,self)
nRootInfo ← setOperation(nRootInfo,GETMINVAL)
minValue ← root.value
selfInfo ← self.info
self.heapSize← heapSize
self.value ← value
if DCAS(heap.size,heapSize,heapSize-1,root.info,rootInfo,nRootInfo) then

break
end if

else
helpNode(root,rootInfo)

end if
end while
lastNode ← HEAP[heapSize]
while true do

lastInfo ← lastNode.info
lastOperation ← getOperation(lastInfo)
selfInfo ← self.info
if lastOperation = COPYLAST or getOperation(selfInfo) = HELPDOWN or getSta-
tus(selfInfo) = DONE then

break
end if
lastOwner ← getOwner(lastInfo)
nNodeInfo ← setOwner(lastInfo,self)
nNodeInfo ← setOperation(nNodeInfo,COPYLAST)
lastValue ← lastNode.value
if lastOperation = HELPUP then

lastOwnerInfo ← lastOwner.info
if (DCAS(lastNode.info,lastInfo,nNodeInfo,lastOwner.info,lastOwnerInfo,OWNERDONE)
then

break
end if

else
if lastInfo = UNLOCKEDNODE then
if (CAS(lastNode.info,lastInfo,nNodeInfo) then

break
end if

else
helpNode(lastNode,lastInfo)

end if
end if

end while
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if getOperation(selfInfo) = GETMINVAL then
nSelfInfo ← setOperation(selfInfo,HELPDOWN)
DCAS(self.info,selfInfo,nSelfInfo,root.value,minValue,lastValue)
nRootInfo ← setOperation(rootInfo,HELPDOWN)
DCAS(root.info,rootInfo,nRootInfo,lastNode.info,lastInfo,EMPTYNODE)

end if
while true do

ownerInfo ← self.info
ownerStatus ← getStatus(ownerInfo)
if ownerStatus = DONE then

break
else

node ← getNode(ownerInfo)
helpDown(node,self)

end if
end while
return self.value
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Chapter 7

Conclusion and Future Work

The implementation we have is a non-blocking approach for deleteMin and insert operations while

the one for readMin is wait free. This algorithm could be very useful in cases which requires more

number of reads. Since DCAS is a very expensive operation, it might not be a good idea to use this

implementation where the size of heap is very small. We believe that this implementation could be

very effective where the size of heap is very large and there are many threads concurrently changing

the heap. In a large heap, these threads might be working at different places and they may not

interfere with each other. If they don’t interfere with one another then the business of helping is

reduced which makes each thread to complete its job faster. Occasional helping required can be

dealt without much work.

However few question still remain to be solved. We will explain some of them in detail.

Does ABA[5] problem exist? What is its impact? As we use CAS and DCAS, its obvious that

ABA problem does exist. Does it have any undesirable consequence? We haven’t found any cases

where ABA problem had any undesirable situation. However, more cases need to be explored and

some formal proof showing the harmless nature of the problem needs to shown. However, if the

problem is found to have some negative impact it can be resolved by including some serial number

or some other counter information in the info field of the node. Since this number doesn’t need

to be changed during the whole operation it won’t have any negative impact on the performance.

Creating counter by a thread can be done offline and each thread has its own counter value so there

won’t be any contention for it.

Can all the operations be made wait free? We see that once the threads have owned any node,

they help other nodes only if they obstruct its path of progress. Such helping can’t go for ever. So
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its definitely a wait free. However, before a thread can own a node, it may end up helping other

threads for ever. This raises the possibilities that it may starve for ever. Practically, this situation

may never arise but theoretically, it can happen. So if we can make a queue of threads trying to

own the root or the last nodes, then we can make the implementation wait free. Implementing wait

free queue is again another synchronization problem but this problem has been solved.
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[1] Hakȧn Sundell. Efficient and Practical Non-Blocking Data Structures. PhD thesis, Chalmers

University of Technology and Göteborg University,Sweden, 2004.
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